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SUMMARY 
After a modification, the interpolation formula of Mott- Smith 

(1951) for the shock wave problem is found to be a solution of the 
Boltzmann equation at large Mach number in a finite region of 
molecular velocity space. This modification gives a unique 
determination of the shock wave thickness, removing the ambiguity 
for this in Mott-Smith’s formula. 

Since the classical paper by Becker, it has been believed that the problem 
of shock wave structure must be considered in the light of the kinetic theory 
of gases. Many attempts have been made to find the solution of the basic 
Boltzmann equation, especially in the case of weak shock waves where the 
solution might be considered to be not so different from the Maxwell 
distribution. However, according to recent experiments on weak shock 
waves by Talbot & Sherman (1956), measured shock profiles are in rather 
better agreement with the predictions of the Navier-Stokes equations than 
with the results of the approximate solutions of the Boltzmann equation 
for weak shock waves. An approximate solution for a strong shock was 
given by Mott-Smith (1951). He considered that the molecular velocity 
distribution in a strong shock wave must be bimodal because of the effects 
of bounding supersonic and subsonic regions where the velocity distributions 
are of Maxwell type with different physical constants. Since the series 
of monocentric functions used in the approximate solutions for weak shock 
waves are inappropriate to represent such a bimodal distribution, Mott- 
Smith’s approximate solution consisting of a sum of the two Maxwell 
distributions seems to be a more reasonable solution of the shock wave 
problem. 

If we write f(c, x) for the distribution function of molecular velocity c 
in a plane shock wave whose normal is in the x direction, Mott-Smith’s 
approximation f ( O )  has the form 

where f o r , f p  signify the Maxwell distributions in the uniform super and 
* Now at Tokyo Electrical Engineering College, Kanda, Tokyo. 
t The definitions of fa, fa differ from Mott-Smith’s by the factors v,(x), v&) 

Yo) = va(x)fa + .p(xlfp, (1)t 

respectively. 
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subsonic regions respectively and are given by 

where n,, ng are the number densities, T,, Tg are the temperatures, 
iu,, iug are the stream velocities and m is the mass of the molecule. 

To  determine the functions va(x), vg(x), Mott- Smith utilized the 
transport equation for an arbitrary function @(c) 

; ( J u@(c)f dc) = J*// M C ' )  - @(c)>fJ1 g dc, 

which is equivalent to an averaging of the one-dimensional Boltzmann 
equation 

L(f) = g - 1.1' (f'A -ff& dQdc1 = 0, (4) 

in the velocity-space c with the weight @(c), where g is the magnitude 
of the relative velocity g = c l - c  of a colliding pair; f l ,  f', f; represent 
f (c l ,  x),f(c', x),f(c;, x) ; and c', c; denote the velocities of a colliding pair 
after collision ; and dM is a differential cross-section. Taking @(c) = u2, u3, 
it was found that 

va(x) = v( - x), vp(x) = v(x) ,  v (x )  = &(1+ tanh 2x/X),  (5) 
where X is a function of Mach number M = uJc, (ca is the velocity of sound 
in the supersonic flow) and gives the thickness of the shock wave. 

Now the form of the function X ( M )  depends on the choice of the 
function @(c) but the forms of the functions v,(x), vg(x) are always the 
same for any @(c) and are given by (5). The purpose of the present note 
is to show that if we take a special form for the function X ( M ) ,  the equation 

satisfies directly the Boltzmann equation (4) at large M for a finite, fixed 
value of c. This choice of S ( M )  may be useful in removing the ambiguity 
about the function X ( M )  caused by its dependence on @(c). 

f(0) = v( - .)fa + v(x)fp (6) 

Substituting from (6) into (4) and utilizing the relations 
d d 4 

dx dx (7) 

(8) 
we get L(f(0)) = v(x)v( - x)Le(f(0)), (9) 

- v(x) = - - v( -x) = x v(x)v( -x), 

f,: fL1 = fa f a l ,  f; f; 1 = f p  f p 1 ,  

where 4 

It is to be noted that the dependence on x and c is separated in (9), and 
L(f(O)) + 0 as x -+ ? co since v(x)v( - x) = t sech2(2x/X). The term L,(f(O)) 

*The definitions of fa, fp differ from Mott-Smith's by the factors v&), V&X) 

respectively. 

W ( O ) )  = +$?-fa) - 1.1' (f,: f ; l  +f,:1 f; -fa f g 1  -fa1 fglg 
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in (9) will be shown to become small for a special X ( M )  when M becomes 
large for finite, fixed c. 

It follows from (8) that T o  do this, we shall first transform L,(f(O)). 

.and hence 

Putting pg = (m/2kTp)l’’(C-iup), gfi = ppi-pp, 

the right-hand side of equation (10) becomes 

J’I exp( -&)(hi + h’ - h, - h)gp dadpp,. (12) 
where 

Then L,(f(O)) becomes 

Jp(h) 7 ~ - ~ ”  

where pa,  is the x component of pa = (m/2kTa)1/2(c  - iua!). 
From (2) and (3), we have 

fa . b ~  (fa) &I = exp(p~-p~)Jg{exp(p~-p%)), (14) 

and utilizing the standard simplified form of the expression (12 )  (see, for 
example, Chapman & Cowling 1953), 

1 j exp( -p;)gfi dadppl 

. f s ~  ( = - K ~ ( ~ ~ )  - exp(p~-p;) j exp(p;l -p:l)~(pp, ppl) dppl. (15) 
fa! fs 

where K,(pg) = 7r-3’2 

and K(pp, pB1) is a symmetric function of pp, pfil, equation (14) reduces to 

For the case of the elastic sphere model of diameter CT, we have 

(16) K,,(pg) = &WF(p$), F(x2) = ed’+ - iz e-tz dt, 
2x2 + 

x o  
F.M. R 



25 8 Akira Sakurai 

and 

exP(P:-p;) 1 exP(P;l - P 3 K ( P p  Ppd dPg1 

=7r1/2u2exp(p2-p$)(k4F(p:) - ; 2 1 exp( -pil + cog) - 1 dppl}, (17) 

gS 

where = uppt PS1ugSi2, k = ( ~ , / ~ ~ ) 1 / 2 .  (18) 

we have pp = kp, + iu,+ (19) 

Writing u.8 = (~~/2kTg)’‘~(u, - US), 

Utilizing the Rankine-Hugoniot relation, k and u , ~  become 

1 a -  2 -1/2 -l/2 
k = (a-l)a-1/2 M - (1+ -..> (1- ---) , 

where a = 2y/(y- l), and y is the ratio of specific heats. 
When M becomes large, k becomes small while u , ~  remains finite and 

approaches the value {(u--2)/2yj2. Accordingly pg in (19) lies near iu,,g 
provided p, is finite and fixed, and then F(pg) in (16) can be expressed as 

F(pg) - F(u$) + 2ku,pp,, F’(u&) + k2@2 F’(u;p) -I- 2 u ~ p p ~ ,  F ” ( $ p ) )  + ..., 
(21) 

where we have used the equation 

= U$ + 2kumj3 p,, + k2& 

and primes in F means differentiation with respect to p i ,  
The integral in (17) 

1 
77 J exp ( - Pi1 + 4) - dP/?l 

will now be shown to be of the order of k2. Utilizing the relations 

gs = kg,, dPp = dP,, 

C P B ~  PSlllgS = uap[iy ga/gJ +k[~ay  dga l ,  
and under the assumption of finite and fixed p,, we get 

and + denotes the angle between g, and i. 
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M 

00 

-- 

10 
5 
4 
3 
2.5 

Now from (20) and the Rankine-Hugoniot relations, 

( U X ) R  

- 
- 
- 

0.495 
0-414 
0.355 

ns = n,(2(a - 2)}1/2A(M),  

( ~ / X ) u ~  

0.628 
0.600 
0-527 
0.478 
0.397 
0-332 

+/c{2(a-2)}1/2{---(1+ 4 a - 2  =)”‘ (I -  ->,,, 1 - 
X ( a -  1 )  aM2 

> 

- 2 ~ r ~ / ~ u ~ n ,  A(M)u,! F’(uzp)j p,, - k2~1~2cr~n,{2(u - 2)j112A(M) x 

1 

By equating the first term in (24) to zero, we can determine X ( M )  from 

where I is the mean free path defined by 
1jZ = 112nn,a2. 

For the case of other molecular models, the second term in ( 1 5 )  is also 
likely to be small for large M and we may determine X from 

= n,{2(a - 2)}1/2A(M)K,,(iu,p). 
4 
x 

In the following table, values of Z/X for a = 5 in (25) and for various 
Mach numbers are compared with Mott-Smith’s values and the results of 

lIX 

0.703 
0.685 
0.630 
0.596 
0-520 
0.474 

(UXAP 

0.468 
0.455 
0.419 
0.397 
0.346 
0.304 

Rosen (1954)’ determined by a restricted variational method using an 
expression of type ( 1 )  as a test function. In the table (Z/X)B denotes the 
results of Rosen, while ( l /X)uz,  (l/X)uz give Mott-Smith’s values for the 
cases CP = u2, u3 respectively. 

When X is given by (25), (24) reduces to 
LC(f(O)) - kL,  +k2L2 + ..., 

R 2  
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where 

’This suggests that we may find a solutionf in the form 

+&can be found easily and is given by 

where we have used the boundary conditions for f, equations (2) and (3). 
Since L, %pax and the mean density ii is given by %= f dc, $(l) does 
not contribute to Z and, accordingly, not to the thickness. It seems, 
however, difficult to find +(2), +@), ... successively, mainly because #I(”), +@), ... 
.are of ordinary order of magnitude only in a finite region of c space which 
depends on k, and we need to estimate the integrals in which they are 
included over the whole of c space. 

f - f (0) + k+@) + P+@’ + ... . 

+(’) = - (4 /x)L1 V( - X)lOg V( - X), 
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