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A note on Mott-Smith’s solution of the Boltzmann
equation for a shock wave
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SUMMARY

After a modification, the interpolation formula of Mott-Smith
(1951) for the shock wave problem is found to be a solution of the
Boltzmann equation at large Mach number in a finite region of
molecular velocity space. This modification gives a unique
determination of the shock wave thickness, removing the ambiguity
for this in Mott-Smith’s formula.

Since the classical paper by Becker, it has been believed that the problem
of shock wave structure must be considered in the light of the kinetic theory
of gases. Many attempts have been made to find the solution of the basic
Boltzmann equation, especially in the case of weak shock waves where the
solution might be considered to be not so different from the Maxwell
distribution. However, according to recent experiments on weak shock
waves by Talbot & Sherman (1956), measured shock profiles are in rather
better agreement with the predictions of the Navier—Stokes equations than
with the results of the approximate solutions of the Boltzmann equation
for weak shock waves. An approximate solution for a strong shock was
given by Mott-Smith (1951). He considered that the molecular velocity
distribution in a strong shock wave must be bimodal because of the effects
of bounding supersonic and subsonic regions where the velocity distributions
are of Maxwell type with different physical constants. Since the series
of monocentric functions used in the approximate solutions for weak shock
waves are inappropriate to represent such a bimodal distribution, Mott-
Smith’s approximate solution consisting of a sum of the two Maxwell
distributions seems to be a more reasonable solution of the shock wave
problem.

If we write f(c, x) for the distribution function of molecular velocity ¢
in a plane shock wave whose normal is in the x direction, Mott-Smith’s
approximation f© has the form

JO = vy(x)fo+ vp(%)fp, (Dt
where f,, fg signify the Maxwell distributions in the uniform super and

* Now at Tokyo Electrical Engineering College, Kanda, Tokyo.
t The definitions of f,, fs differ from Mott-Smith’s by the factors v, (x), vy()
respectively.
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subsonic regions respectively and are given by

3/2 .
foz = Ny (%) exp{ - Z:Ta (c_lua)z}, (2)*

m 3/2 m . 2
= _— — s (e — , 3)*
fo=mp (ka g) exp{ ZkTg(c mﬂ)% ®)
where n,, ng are the number densities, T, Ty are the temperatures,
iu,, iug are the stream velocities and m is the mass of the molecule.
To determine the functions v,(x), vg(x), Mott-Smith utilized the
transport equation for an arbitrary function ®(c)

% ( J ud(c)f dc) = j j [ {®(c') — D(c)}ff, g dQdc, dc,

which is equivalent to an averaging of the one-dimensional Boltzmann
equation
Ff

L(f)=uzg — || (FAi—~ffe d2de, = 0, *)

in the velocity-space ¢ with the weight ®(c), where g is the magnitude
of the relative velocity g = ¢, —¢ of a colliding pair; f;, f’, f| represent
f(ey, x),f(c’, x),f(e{,x); and ¢’, ¢, denote the velocities of a colliding pair
after collision; and d€) is a differential cross-section. Taking ®(c) = u?, u3,
it was found that

v (%) = v(—x), vg(x) = v(x), v(x) = (1 + tanh 2x/X), &)
where X is a function of Mach number M = u,/c, (¢, is the velocity of sound
in the supersonic flow) and gives the thickness of the shock wave.

Now the form of the function X(M) depends on the choice of the
function @(c) but the forms of the functions v,(x), vg(x) are always the
same for any ®(c) and are given by (5). The purpose of the present note
is to show that if we take a special form for the function X(M), the equation

fO=v—x)fu+v(x)fg (6)
satisfies directly the Boltzmann equation (4) at large M for a finite, fixed
value of ¢. This choice of X(M) may be useful in removing the ambiguity
about the function X(M) caused by its dependence on ®(c). A

Substituting from (6) into (4) and utilizing the relations

£ o) = = 5 o(—x) = 3 o@(—), ™
fifa=tufas  Jifir=Iofon ®)
we get L(f®) = v(x)v(—x)L(f®), 9)

R L (f0) = Sulfa—f) = [ [ fotSia ST Son—Fen g 42,

It is to be noted that the dependence on x and ¢ is separated in (9), and
L(f®)—> 0 as x »> + oo since v(x)v(—x) = $sech?(2x/X). The term L (f©)

*'The definitions of f,, fz differ from Mott-Smith’s by the factors v, (x), vs(x)
respectively.
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in (9) will be shown to become small for a special X(M) when M becomes

large for finite, fixed c.
To do this, we shall first transform L (f®). It follows from (8) that

g f; / ’ folzl
fafﬁl*fﬁfﬁlfé) falfﬁ‘fﬁfﬁlfél’
and hence

JJ (fc: f1;1 +f9:1 .f,;_fa fﬁl_fal f,s)g decl
= ‘ ~fﬁfﬁl L.:‘_l -+ 'fé — 'fﬁl — L’_‘ ngdcl. (10)
fl fﬂ fﬁl f,g

2]
Patting pPg= (m/2k Tﬁ)l/z(c - iuB), gs = Pp1— Pp (1)

the right-hand side of equation (10) becomes

<2j‘;n‘Tﬂ>1/2 ngfs /5 Gé)

WRETC ) = 7 [ [ exp(— ph)(h +H — b — gy dpg (12)

Then L, (f®) becomes

L) = ~fune 5 (14 1 (B) " )(1-2)+

1 (2RT\Y2  f,

-+ u— <——m ) nﬂff:}ﬁ

where p, ., is the x component of p, = (m/2kT,)"*(c —iu,).
From (2) and (3), we have

}%Jﬁ<%> = exp(pz—piM plexp(p; — P2}, (14)

and utilizing the standard simplified form of the expression (12) (see, for
example, Chapman & Cowling 1953),

(]} w

a

To(h) = — Ko(®a)h(pp)— | Mpp) K(pg, p) P
h .
where Kopg) = 7 | | exp(—p}lgs dQdpp
and K(pg, pg,) is a symmetric function of pg, pg,, equation (14) reduces to
P14(2) = — Ko —expi 1 | explia— 2K 03 o) o (15)

For the case of the elastic sphere model of diameter o, we have

2x2+1 Jl

’

Ko(pg) = 7> F(p}), F(x?) = e+ etdt, (16)

0
F.M. R
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and

exp(p2—13) [ exp(pf—pEK (P, Par) dppn

2 2 2 2 1
— 2o exp(pE— pg){k4F( p)- 5 [exp(—phi+af) % dPﬁl}’ 7y

where wg = {[pg, Ppl/es}® k = (T4 Tg)"2 (18)
Writing uyg = (m/2k Tg)"*(u, —ug),
we have Pp = kpo+iusg. (19)

Utilizing the Rankine~Hugoniot relation, £ and u,3 become

1 a—2\-Lz 1 \-12
= —_ ~1/2 pa— e
k=(a=1a M(1+ M2) (1 aM2> ’

a—2\12 1 a—2\-12 1 \-lz
w = () (- )+ ) (-am)

where a = 2y/(y—1), and y is the ratio of specific heats.

When M becomes large, k becomes small while u,g remains finite and
approaches the value {(a—2)/2}¥2. Accordingly pg in (19) lies near iu,g
provided p, is finite and fixed, and then F(p3) in (16) can be expressed as

F(p3) ~ F(uZg) +2kuyg po, F'(ulg) + k2{p2 F'(ulg) + 2ulg p2, F'(ulp)} + ...,
(21)

(20)

where we have used the equation
Ph = uzg+2kusg pog +KP;

and primes in F means differentiation with respect to p3.

The integral in (17)

2 1
— | exp(—pi4+wd) — d
WJ P(—Pa wﬂ)g,g Pp1

will now be shown to be of the order of k2. Utilizing the relations
gs=hey  dpg=FKdp,

[pﬂ’ pﬂl]/gﬁ = uaﬁ[i’ gcx/ga] +k[pw ga/gcx]’

and under the assumption of finite and fixed p,, we get
2 1
— exp(pi—p3) f exp(=platf) 5 dpp ~ K1) + - (22)

h 2 -1 .
T K = 7 exp(pi=p}) | - exp(—pi+ulgsiny) dpu,

and ¢ denotes the angle between g, and i.
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Now from (20) and the Rankine~Hugoniot relations,

1 /2kT N\ [2a—2)\12 1
TR
1-‘1; (@)“2 ng = no{2a—2)RA(M), (23)

1 \ve a—2\-12
A(M)E(l—m> <1+ W) ,
and equation (13) then finally becomes for finite and fixed p,,

LfO) ~ —fauy [{(4/X ) —mang{2Aa—2) 12 A(M) F(uzg)}

+E{2(a—2)p {X_(ai——ﬁ (1 + th_3>1/2 (1— a—}Wz)m -

— 2722 A( M)uaﬁ F(u? B)} Doe— K2mY20%n {2(a—2)} 2 A(M) x

< {LF (3p) + 22 ')~ 1@} o |- (29
By equating the first term in (24) to zero, we can determine X(M) from
— 1/2
7 -(55)" a0nraz), 25)
where /1s the mean free path defined by
1/1 = V2mny o,
For the case of other molecular models, the second term in (15) is also
likely to be small for large M and we may determine X from
4
X
In the following table, values of I/X for a = 5 in (25) and for various
Mach numbers are compared with Mott-Smith’s values and the results of

= ny{2(a—2)}RA(M)K itrog).

M Ux UX)r UX)s X
0 0-703 — 0-628 0-468

10 0-685 — 0-600 0-455
5 0-630 — 0-527 0-419
4 0-596 0-495 0-478 0397
3 0-520 0-414 0-397 0-346
2:5 0-474 0-355 0-332 0-304

Rosen (1954), determined by a restricted variational method using an
expression of type (1) as a test function. In the table (//X); denotes the
results of Rosen, while (//X),. ({/X), give Mott-Smith’s values for the
cases O = u?, u® respectively.
When X is given by (25), (24) reduces to
L(fO)y ~kL,+k2Ly+ ...,

R2
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‘where
401 a—2\1z 1 \ve
L1 = [2(0—2)]1/2‘?{;__—1 <1 + W) <1 — m—2> —
2 A
- \/ A(M) UnB F’(uaﬂ)} Do

1 a—~2 12 2 ’ ] 2 2 74 2
7( = ) A(MY{p% F'(u25) + 2125 92, F"(u2g) — I(po)}.

L,

"T'his suggests that we may find a solution f in the form
[~ O+ kD +RESD 4.,

¢jm can be found easily and is given by

¢ = —(4/ X)L, (- x)log v(— ),
where we have used the boundary conditions for f, equations (2) and (3).
Since L, x p,, and the mean density 7 is given by n= [ f dc, ¢ does
not contrlbute to n and, accordingly, not to the thickness. It seems,
however, difficult to find ¢@, ¢®, ... successively, mainly because ¢, ¢@, ..,
.are of ordinary order of magnitude only in a finite region of ¢ space which
-depends on k, and we need to estimate the integrals in which they are
included over the whole of ¢ space.
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